Step of Proof: fib_wf
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
fib
wf
:
1.
n
:
2.
n1
:
. (
n1
<
n
)
(fib(
n1
)
)
fib(
n
)
latex
by
InteriorProof
((RecCaseSplit `fib`)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n
CollapseTHENA ((Au
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
: .....truecase..... NILNIL
C1:
3. (
n
= 0)
(
n
= 1)
C1:
1
C
2
: .....falsecase..... NILNIL
C2:
3. (
(
n
= 0)) & (
(
n
= 1))
C2:
fib(
n
- 1)+fib(
n
- 2)
C
.
Definitions
T
,
ff
,
P
Q
,
P
Q
,
tt
,
if
b
then
t
else
f
fi
,
Y
,
fib(
n
)
,
P
Q
,
x
:
A
.
B
(
x
)
,
True
,
P
&
Q
,
P
Q
,
,
t
T
,
Unit
,
,
,
Lemmas
not
functionality
wrt
iff
,
assert
of
bnot
,
and
functionality
wrt
iff
,
assert
of
band
,
bnot
thru
bor
,
true
wf
,
squash
wf
,
eqff
to
assert
,
assert
of
eq
int
,
or
functionality
wrt
iff
,
assert
of
bor
,
eqtt
to
assert
,
iff
transitivity
,
not
wf
,
bnot
wf
,
band
wf
,
assert
wf
,
bool
wf
,
eq
int
wf
,
bor
wf
origin